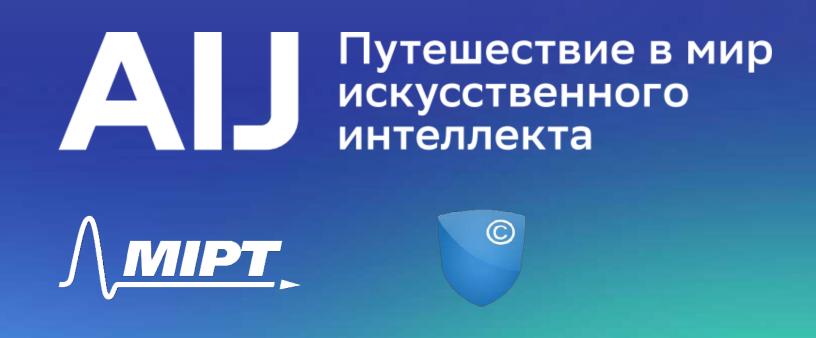
УЛУЧШЕНИЕ ДЕКОДИРОВАНИЯ ДАННЫХ ФМРТ В УСЛОВИЯХ ОГРАНИЧЕННОГО НАБОРА ДАННЫХ

Дорин Д.Д.^{1,2}, Грабовой А.В.^{1,2}, Стрижов В.В.¹



Декодирование функциональной магнитно-резонансной томографии (фМРТ) критически важно для ранней диагностики неврологических заболеваний. Из-за малого объёма данных и высокой вариативности между пациентами современные нейросети часто неприменимы. Мы предлагаем классический, персонализированный подход, не требующий больших выборок и адаптирующийся под индивидуальную анатомию мозга.

ПОСТАНОВКА ЗАДАЧИ

Дано Ивременных рядов фМРТ одного пациента:

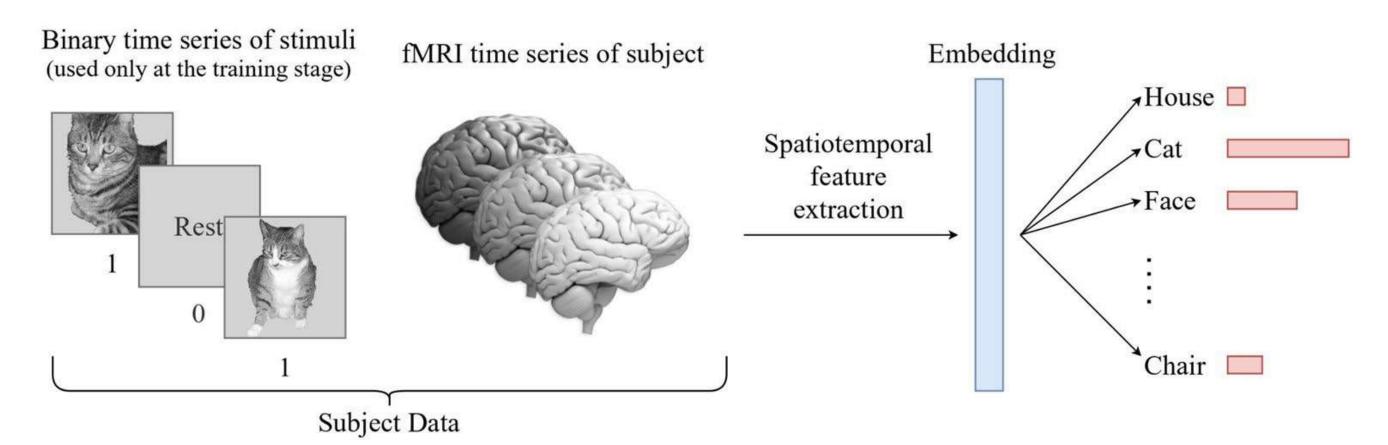
$$\{\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_N\}, \quad \mathbf{X}_i = [\mathbf{x}_1^i, \mathbf{x}_2^i, \dots, \mathbf{x}_{\tau}^i], \quad \mathbf{X}_i \in \mathcal{X}_{\tau},$$
$$\mathbf{x}_t^i \in \mathbb{R}^{X \times Y \times Z}, \quad y_i \in \{1, \dots, C\},$$

каждое наблюдение — это временной ряд трехмерных сканов фМРТ размером X, Y, Z, всему ряду соответствует одна метка из C возможных классов. Набор данных:

$$\mathfrak{D} = \{ (y_i, \mathbf{X}_i) \mid i = 1, \dots, N \}.$$

Цель – построить отображение g, учитывающее пространственные и временные характеристики рядов фМРТ:

$$\mathbf{g}: \mathcal{X}_{\tau} \to \{1, \dots, C\}.$$



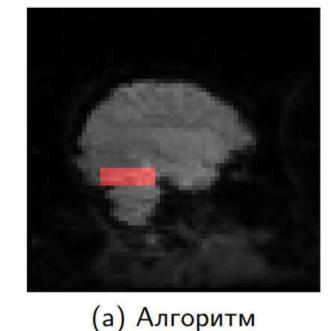
ОПИСАНИЕ ДАТАСЕТА

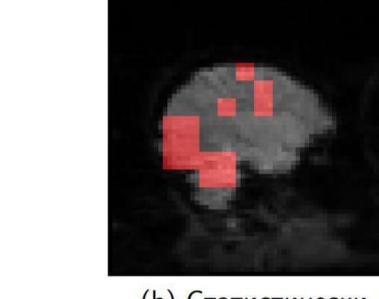
- 6 участников, по 12 сессий каждый
- Визуальные стимулы 8 категорий (стул, дом, кот и др.)
- Частота кадров: 2.5 Гц
- Пространственные размерности фМРТ 64, 64, 40 вокселей

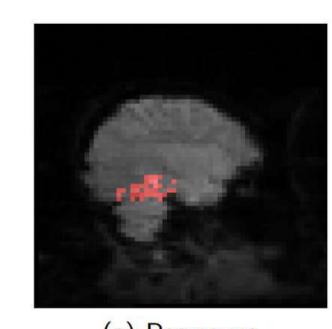
ВАЛИДАЦИЯ АЛГОРИТМА МАСКИРОВАНИЯ МОЗГА

Используются данные 1-го пациента из датасета. Полученные области хорошо покрывают разметку нейробиологов. Корреляция областей со стимулом статистически значима.

Метрика	Precision	Recall	IoU
BAD vs. Целевая BAD vs. Статистически значимая		0.43 ± 0.07 0.22 ± 0.09	



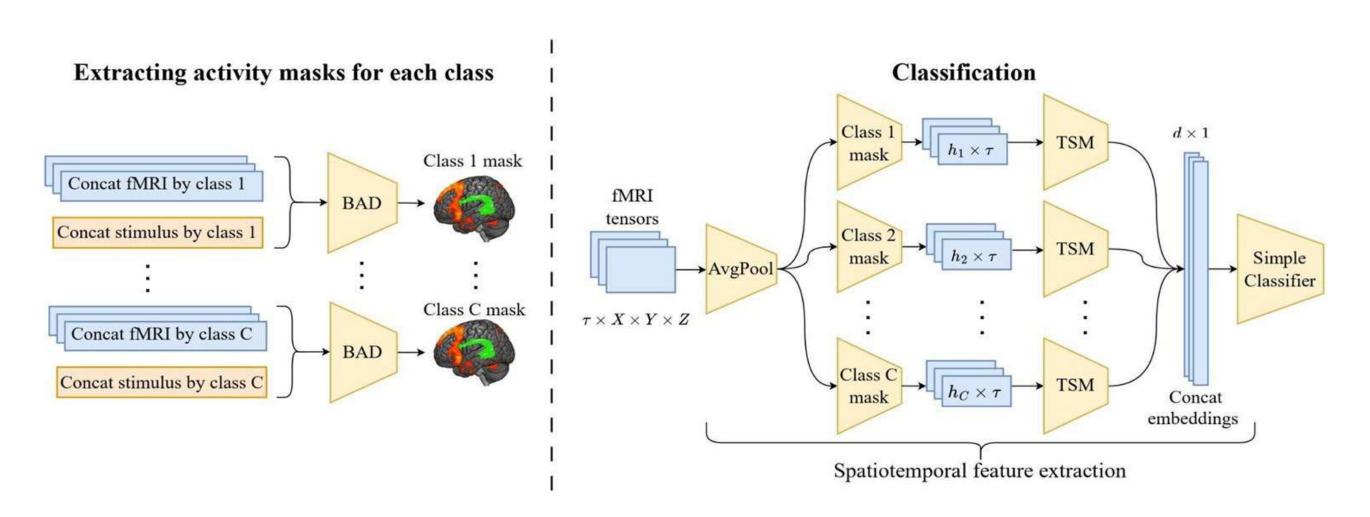




(b) Статистически (c) Разметка значимые области нейробиологов

ПРЕДЛАГАЕМОЕ РЕШЕНИЕ

Метод строится из двух этапов — извлечение масок активности головного мозга для каждой категории стимула и классификации с учетом полученных масок.



Отображение д представляется как суперпозиция:

 $\mathbf{g} = \varphi \circ \psi \circ \mathcal{A}$

 $\mathcal{A}: \mathcal{X}_{\tau} \to \mathbb{R}^{\tau \times X/k_s \times Y/k_s \times Z/k_s}$ — Average Pooling

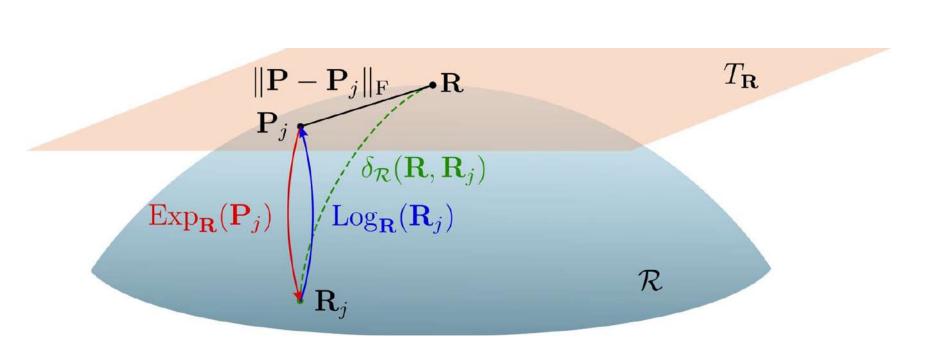
 $\psi: \mathbb{R}^{\tau \times X/k_s \times Y/k_s \times Z/k_s} \to \mathbb{R}^d$ — векторизатор

 $\varphi: \mathbb{R}^d \to \{1, \dots, C\}$ — классификатор (Logistic Regression)

Векторизатор представляется как конкатенация отображений по всем классам стимулов:

$$\psi_k : \mathbb{R}^{\tau \times X/k_s \times Y/k_s \times Z/k_s} \to \mathbb{R}^{d_k}, \quad \psi_k = \pi_k \circ \mathbf{f}_k, \quad d = \sum_{k=1}^C d_k, \quad d_k = \frac{h_k(h_k + 1)}{2},$$

 $\mathbf{f}_k : \mathbb{R}^{\tau \times X/k_s \times Y/k_s \times Z/k_s} \to \mathbb{R}^{h_k \times \tau}$ применяет маску активности \mathcal{M}^k , $\pi_k : \mathbb{R}^{h_k \times \tau} \to \mathbb{R}^{d_k}$ проекция на риманово касательное пространство.



ВЫЧИСЛИТЕЛЬНЫЙ ЭКСПЕРИМЕНТ

Проведен анализ исключением компонент. Рассмотрены три упрощённые модели. Качество оценивалось по метрикам классификации на тестовых данных, усредненным по всем пациентам.

Momor	Acourocas	Magna El Cagna	Miona El Coons	A source or CI	Magna E1 CI	Miona E1 CI
Метод	Accuracy	Macro F1-Score	Micro F1-Score	Accuracy CI	Macro F1 C1	Micro F1 CI
Без TSM	$0.24 \pm 0.11*$	$0.22 \pm 0.11*$	$0.24 \pm 0.11*$	[0.11, 0.37]	[0.09, 0.36]	[0.10, 0.37]
Без масок классов	$0.25 \pm 0.13*$	$0.23 \pm 0.13*$	$0.25 \pm 0.13*$	[0.09, 0.41]	[0.07, 0.39]	[0.09, 0.41]
Оригинальные маски	$0.10 \pm 0.05**$	$0.09 \pm 0.04**$	$0.10 \pm 0.05**$	[0.04, 0.16]	[0.03, 0.14]	[0.04, 0.16]
DeSPoT	0.61 ± 0.04	$\textbf{0.56} \pm \textbf{0.03}$	0.61 ± 0.04	[0.56, 0.66]	[0.52, 0.60]	[0.56, 0.66]

Проведено сравнение с нейросетевыми моделями (LSTM и Attention). Метрики усреднены по участникам — предложенный метод значительно превосходит нейросетевые решения.

Модель	Accuracy	Macro F1-Score	Micro F1-Score	Accuracy CI	Macro F1 CI	Micro F1 CI
Оригинальные маски и LSTM	$0.12 \pm 0.02**$	$0.03 \pm 0.01**$	$0.12 \pm 0.02**$	[0.09, 0.14]	[0.02, 0.04]	[0.09, 0.14]
Оригинальные маски и Attention	$0.14 \pm 0.04**$	$0.04 \pm 0.03**$	$0.14 \pm 0.04**$	[0.11, 0.18]	[0.02, 0.07]	[0.11, 0.18]
Ham (DeSPoT)	$\textbf{0.61}\pm\textbf{0.04}$	$\textbf{0.56}\pm\textbf{0.03}$	$\textbf{0.61}\pm\textbf{0.04}$	[0.56, 0.66]	[0.52, 0.60]	[0.56, 0.66]

Приведены 95% доверительные интервалы. Статистическая значимость улучшений относительно полной методологии DeSPoT обозначена звёздочками: *p < .05, **p < .005.

¹ Московский физико-технический институт

² Компания Антиплагиат

E-mail: dorin.dd@phystech.edu